Por: Milthon B. Lujan Monja y Carmen Chimbor Mejia
El sector de la acuicultura mundial continúa creciendo aun ritmo de 6.9% por año, pero ahora se esta debatiendo como la actividad puede seguir creciendo de una forma sostenible y rentable. Las actuales prácticas de monocultivo y las percepciones intrínsecas a la industria acuícola están cambiando hacia una visión de la expansión de la producción de especies carnívoras con organismos de menor nivel trófico en granjas acuícolas balanceadas de forma ecológica (Neori, 2008). El rápido crecimiento de la acuicultura enfrenta algunos desafíos en la disponibilidad de lugares adecuados y en la capacidad de carga ecológica de los lugares existentes (Troell et al. 2009).


La Acuicultura Integrada Multitrófica (IMTA) se define como el cultivo de organismos que requieren de alimentos exógenos (peces o camarones) en combinación con organismos que extraen los nutrientes inorgánicos disueltos (macroalgas) o el material orgánico particulado (moluscos bivalvos) y, además, los procesos biológicos y químicos están balanceados (Chopin, 2006); en otras palabras podemos definir al IMTA como el cultivo de múltiples organismos de diferentes niveles tróficos al mismo tiempo, siendo el objetivo el crear un sistema balanceado. Como ejemplo, podemos citar el cultivo de salmón, mejillones y macroalgas, en donde el salmón es el cultivo principal, y los mejillones y macroalgas se usan para aprovechar los desechos orgánicos (alimentos no consumidos) y los desechos inorgánicos (nitrógeno y fósforo) producto de la descomposición de las heces y el alimento no consumido.

El concepto de IMTA es extremadamente flexible, puede ser aplicado a sistemas de cultivo que emplean agua dulce o marina. Lo importante es que los organismos sean seleccionados en base a las funciones que ellos tienen en el ecosistema y por su valor o potencial económico (Chopin, 2006 y Neori, 2008). El IMTA tiene el potencial de incrementar la sustentabilidad de la acuicultura en todo el mundo, debido a que puede ayudar a reducir la eutrofización en los ecosistemas de agua dulce y marina; en este sentido Chopin et al (2010) indica que los sistemas IMTA no solo producen biomasa valiosa, también provee el servicio de reducción de nutrientes.

Otra de las bondades del IMTA es que provee la oportunidad de diversificar y reducir el riesgo económico cuando se elige las especies apropiadas.

Algunas experiencias
Los sistemas IMTA son diseñados para mitigar los problemas ambientales causados por la acuicultura. Abreu et al. (2009) reporta el cultivo de Gracilaria chilensis cerca a las granjas de salmón, determinando que el crecimiento de la macroalga fue mayor en cultivos suspendidos cerca a las jaulas de salmón, concluyendo que 100 ha de cultivo suspendido de G. chilensis puede reducir de forma efectiva el aporte de nitrógeno de una granja de 1500 t de salmón.

Por otro lado, Abreu et al. (2010) evaluó el uso potencial de la macroalga G. vermiculophylla como componente del biofiltro en el cultivo de turbot en tierra; los investigadores concluyeron que G. vermiculophylla es un componente eficiente de los sistemas IMTA en tierra, con potenciales beneficios ambientales y económicos para la piscigranja. Mientras que Yokoyama y Ishihi (2010) evaluaron el cultivo de la macroalga Ulva ohnoi dentro de las jaulas de peces, indicando que esta especie es adecuado para ser usado como biofiltrador.

En Canadá, Ridler et al. (2007) informa que un proyecto piloto cultivó las macroalgas: Saccharina latissima y Alarina esculenta, con mejillones azules (Mytilus edulis) y salmón (Salmo salar) en la bahía de Fundy, determinando que la tasa de crecimiento de las macroalgas se incremento en 46% y en más de 50% para los mejillones.

En el Perú, aun no se han desarrollado experiencias de sistemas IMTA; aun cuando estos son una buena alternativa para diversificar las explotaciones acuícolas, pero sobretodo para garantizar su sustentabilidad.

Referencias:

Abreu, M., D. Varela, L. Henríquez, A. Villarroel, C. Yarish, I. Sousa-Pinto and A. Buschmann. 2009. Traditional vs. Integrated Multi-Trophic Aquaculture of Gracilaria chilensis C. J. Bird, J. McLachlan & E. C. Oliveira: Productivity and physiological performance. Aquaculture, 293 (3-4): 211-220.

Abreu, M., R. Pereira, C. Yarish, A. Buschmann and I. Sousa-Pinto. 2010. IMTA with Gracilaria vermiculophylla: Productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture (Article in Press).

Chopin, T. 2006. Integrated Multi-Trophic Aquaculture. What it is, and why you should care... and don´t confuse it with polyculture. Northern Aquaculture, July/August. Pp: 4.

Chopin, T., M. Troell, G. Reid, D. Knowler, S. Robinson, A. Neori, A. Buschmann and S. Pang. 2010. Integrated Multi-Trophic Aquaculture. Part II. Increasing IMTA Adoption. Global Aquaculture Advocate, November/December. Pp: 17-19.

Neori, A. 2008. Essential role of seaweed cultivation in integrated multi-trophic aquaculture farms for global expansion of aquculture: an analysis. Journal of Applied Phycology 20(5):567-570.

Ridler, N., K. Barrington, B. Robinson, M. Wowchuk, T. Chopin, S. Robinson, F. Page, G. Reid, M. Szemerda, J. Sewuster and S. Boyne-Travis. 2007. Integrated Multitrophic Aquaculture. Canadian Project combines salmon, mussels, kelps. Global Aquaculture Advocate. March/April. Pp: 52-55.

Troell, M., A. Joyce, T. Chopin, A. Neori, A. Buschmann and Jian-Guang Fang. 2009. Ecological engineering in aquaculture – Potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297:1-9.

Yokoyam H., and Y. Ishihi. 2010. Bioindicator and biofilter function of Ulva spp. (Chlorophyta) for dissolved inorganic nitrogen discharged from a coastal fish farm — potential role in integrated multi-trophic aquaculture. Aquaculture, 310(1-2):74-83.